Observations of Balmer-dominated Filaments in Supernova Remnants

Jae-Joon Lee

Korea Astronomy & Space Science Institute (KASI)

Shock Waves

Physics of Interstellar Shock Waves

Non-Radiative

Shock Waves

Non-Radiative

Shock Waves

where Radiative Loss is Negligible

Shock Jump Condition

Shock Jump Condition

they are

Collisionless

they are

Collisionless

• The shock dissipation is not by collisions but by collective motions of plasma (MHD turbulence, etc.)

they are

Collisionless

- The shock dissipation is not by collisions but by collective motions of plasma (MHD turbulence, etc.)
- The shock transition process, that converts the bulkmotion of preshock gas into the random motion of postshock gas, is collisionless

Shock Jump Condition

Collisionless shocks

Collisionless shocks

 do not partition energy equally among different species

$$T_p \neq T_e \neq T_{ion}$$

Collisionless shocks

 do not partition energy equally among different species

$$T_p \neq T_e \neq T_{ion}$$

accelerate cosmic rays

$$\rho_2 > 4\rho_1$$

$$T_2 < \frac{3}{16} \frac{\mu v_s^2}{k}$$

We want to Constrain

We want to Constrain

Physics of Collisionless Shocks

We want to Constrain

Physics of Collisionless Shocks

by

Observations of Balmer-dominated filaments

What are **Balmer-dominated filaments** ?

Radiative filament

Radiative filament

Faint optical filaments whose line emission is dominated by Hydrogen Balmer lines.

- Usually found in young (Type Ia) SNRs (Vs > 500 km/s)
 - Tycho, Kepler, SN1006 etc.
- Represent fast non-radiative shocks into partially neutral medium (Chevalier & Raymond, 1978)
 - Ha emission is from just behind the shock front

Unique Line Profile

Collisionless Shocks

into

Partially Neutral Medium

нι

Shock

Temperature Equilibration

- Broad component Line width :Tp
- Flux ratio of Broad to Narrow Components :Te

Temperature Equilibration

Te / Tp

Cosmic Ray Acceleration

- Do SNR shocks accelerate Cosmic ray protons? How efficient?
 - Gamma-ray Observations

Do SNR shocks accelerate Cosmic ray protons?

$$T_2 \quad = \quad \frac{3}{16} \frac{\mu v_s^2}{k}$$

• $T_p(obs) << T(v_s)$

RCW 86 : measured shock velocity ~ 6000 km/s

Helder et al. (2009)

Non-Gaussian Line Profiles

 With cosmic ray protons (i.e., nonthermal protons), line profiles of the broad component deviate from Gaussian

Raymond et al. (2010)

Cosmic Ray Precursor

- Discontinuous
- Supersonic motion

Distance from Shock Front

Cosmic Ray Precursor

- Discontinuous
- Supersonic motion
- Shock Precursor
 - radiative precursor
 - cosmic ray precursor

Cosmic Ray Precursor

- Discontinuous
- Supersonic motion
- Shock Precursor
 - radiative precursor
 - cosmic ray precursor

HST Imaging of Tycho

Lee et al. (2010)

HST Imaging of Tycho

Lee et al. (2010)

HST Imaging of Tycho

Lee et al. (2010)

- Deceleration of preshock gas
- Radial velocity difference in precursor and postshock area (Lee et al., 2007)

• From observation:

- From observation:
 - precursor temperature (Tpeak)

- From observation:
 - precursor temperature (Tpeak)
 - Amount of gas deceleration ($\Delta V \sim 100 \text{ km/s}$)

- From observation:
 - precursor temperature (Tpeak)
 - Amount of gas deceleration ($\Delta V \sim 100$ km/s)
 - precursor width (L)

- From observation:
 - precursor temperature (Tpeak)
 - Amount of gas deceleration ($\Delta V \sim 100$ km/s)
 - precursor width (L)
- Ha emission model w/ radiative transfer (Lee et al., in prep)

- From observation:
 - precursor temperature (Tpeak)
 - Amount of gas deceleration ($\Delta V \sim 100$ km/s)
 - precursor width (L)
- Ha emission model w/ radiative transfer (Lee et al., in prep)
- A time-dependent cosmic-ray (CR) modified shock model (Wagner et al., 2009)

Cosmic ray Diffusion Coefficient

Cosmic ray Injection Rate

Cosmic ray Diffusion Coefficient

Cosmic ray Injection Rate

Cosmic ray Diffusion Coefficient

Cosmic ray Injection Rate

Summary

- w/ Balmer-Dominated Filaments,
 - Tp + Te
 - key parameters of CR acceleration: diffusion coeff., injection rate, etc...
- Applications of Balmer-Dominated filaments are not fully realized!

Current Status

- Even with ~10 m class telescopes currently available (MMT, SUBARU,VLT, etc.), we're only observing brightest (i.e., slowest) filaments.
 - brightness $\propto \varrho v$
 - $\varrho \propto v^{-2}$ (w/ constant ram pressure)
 - brightness $\propto v^{-1}$

Tycho w/ KPNO (courtesy of F. Winkler)

Tycho w/ KPNO (courtesy of F. Winkler)

- w/ GMT, we will be able to probe shocks of v > 3000 km/s
- Lots of potentials in studying Balmer-Dominated filaments that will improve our understanding of Physics of Collisionless shocks.

Tycho w/ KPNO (courtesy of F. Winkler)